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Abstract. The multifractal structure of the ﬂow (channe[ discharge) distribution is investi- _
gated in river network models which are extended versions of Scheidegger’s river network
model. Two models are proposed: in the first model the constant injection rate in Scheideg-
ger’s model is replaced by an uncorrelated random variable and in the second model the
injection rate is given by that of a power law L* where L is the length in the downstream
direction. The effect of the injection rate on the multifractality of the flow distribution is
studied by Monte Carlo simulation. It is shown that-the partition function Z(g)=X I
scales as Z(g)= L¥? where I, is the flow (channel discharge) of water passing over the
bond i within the river network and the summation ranges over all bonds. In the first
model, for a large L, the multifractal structure of the flow distribution agrees with that of
Scheidegger’s miodel. In the second model, it is found that the power law 1nject10n rate
has an important effect on-the multlfractallty

1. Imtroduction -

Recently, there has been increasing interest in fractal structures of growth processes
such as diffusion-limited aggregation (pLA), ballistic deposition and river networks.
The pLa model presents a prototype of the paitern formation of diffuse systems
including electrodeposition, crystal growth, viscous fingering and bacterial colonies
{1-8]. The ballistic deposition model provides a basis for understanding the deposition
processes used to prepare a wide variety of thin-film devices [9]. Branched river
networks are among nature’s most common patterns spontaneously producing fractal
structure [10].

The multifractal properties of the pELA and the random resistor network have recently
attracted considerable attention [11-14]. It has become clear that the oLA aggregate
cannot be fully characterized by its fractal dimensionality. In order to characterize the
aggregate further, it is necessary to derive the multifractal structure of the growth
probability distribution. From the multifractality, one can obtain detailed information
on the capability of each perimeter site to grow and, therefore, more information dén
the surface structure [11, 13]. Also, it has been found that the electric current distribution
on the percolation cluster shows multifractal structure [15]. It has been shown that
electrical properties of self-similar resistor networks should be characterized by an
infinite set of exponents.

Rivers have been studied extensively by a diverse range of researchers with a variety
of techniques and goals [16, 17]. Geomorphologists have found scaling relationships
among various combinations of basin statistics from field data, such as drainage density
and branching ratios. Hydrologists have likewise extracted power laws for channel

0305-4470/93/ 133071+ 08807.50 (© 1993 IOP Publishing Lid ’ 3071



3072 T Nagatani

parameters such as width, depth and velocity as functions of total channel discharge.
Some imvestigators have constructed models for the evolution of an entire drainage
network [18-20]. Scheidegger’s model is the simplest model which reveals the essential
features of river formation. It is known that the size distribution of rivers in
Scheidegger’s model satisfies the power law and the river pattern shows the self-affine
fractal structure from theorstical methods and computer simulation [21-23]. Very
recently, it was found that the flow (channel discharge) distribution in Scheidegger’s
river network shows a typical multifractal structure [24]. It was shown that the partition
function Z(g) =3, I? scales as Z(g) =~ L*@ where I, is the flow of water passing over
the bond i within the river network, the summation ranges over all bonds and L is the
size of river network. It was found that the river width distribution also shows
multifractality if the width w of a river scales as w=JI®,

In this paper, we extend Scheidegger’s river network model to take into account
the variable injection rate. We present two extended versions of Scheidegger’s river
model. In the first model, the constant injection rate in Scheidegger’s model is replaced
by an uncorrelated random variable. The strength of the random injection rate rep-
resents the density of stationary falling rain. The first model can take into account the
effect of the quantity of rain on the flow distribution in the river network. In the second
model, we replace the constant injection rate by the injection rate of the power law
L? where L is the length in the downstream direction. The second model represents
the river formation process with increasing falling rain. The quantity of falling rain
increases according to the river’s flow in the downstream direction. We investigate the
effect of the injection rate on the multifractality of the flow distribution by the use of
Monte Carlo simulation. The variable injection rate does not change the geometrical
properties of the river network. However, it has an important effect on the flow
distribution. ‘

In the case of a constant injection rate, the flow (channel discharge) coincides with
the drainage basin area. In real river networks, the flow distribution is not consistent
with the distribution of the drainage basin area. Generally, the rainfall upstream is
different from that downstream. The local rainfall changes as it goes downstream. The
simple river network model with this property has been little investigated. The second
model is presented to take into account a variable rainfall. We are interested in the
scaling behaviour of a river network. Therefore, we consider the second model with
the injection rate of the power law L”.

The paper is organized as follows. In section 2 we describe the extended models
of Scheidegger’s river network. In section 3 we present the simulation results. We
derive the scaling of the partition function and the multifractality of the flow distribu-
tion. It is shown that in the first model the multifractal structure of the flow distribution
agrees with that of Scheidegger’s model and in the second model the power law
injection rate has an important effect on the multifractality. In section 4 we give a
summary.

2. Models

First we introduce Scheidegger’s river network model [21]. We extend Scheidegger’s
model to take into account a variable injection rate. In Scheidegger’s model, rain is
assumed to be stationary and to fall uniformly on oblique square lattices. One unit of
water is injected into each lattice site per unit time. Then, fallen raindrops run down
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the slope. When two raindrops collide with each other, they join and make one drop,
which runs down just as before the collision. Any splitting of the flow is prohibited.
Flows are allowed to go right or left but only in the downstream direction. As the
result, the rivers do not contain any loops. All branches are directed upstream. One
of the most important quantities in'this system is the distribution of flow rates in the
river network. The rate of flow in the river network is proportional to the area of its
drainage basin. The flow rate I, on the bond i is defined as the amount of flowing
water through the bond i per unit time. Bach bond of the river network can be
characterized by the flow rate of water. If the bond (or site) is labelled by the position
{m, n) where m indicates the downstream direction, the flow rate satisfies the equation

I(m+71, ny=wim ) I(m n}+{1-wlmn+1)|I(mn+1)+1 - (1)

where w(m, n) denotes the realization of the flow direction at the site (m, n) which is
equal to 1 when the flow at the site (m, n) goes down nght and 0 when the flow goes
down left and w(m, n) is given by

. ) = {'1 probability }

0 probability 5. @)

We extend Scheidegger’s model to take into account the vanable injection rate.
We present two versions of Scheidegger’s model. In the first model, the constant
injection rate in equation (1) is replaced by an uncorrelated random variable. The
strength of the random injection rate represents the density of stationary falling rain.
The first model can take into account the effect of the quantity of rain on the flow
+ distribution. The first model is given by

I{m+1,r)=w(m, n)I(m,n)+[1—w(m n+1)1I{m n+1)+n{m+1,n) | (3)

where the injection rate n{m, n) represénts white noise with & mean (n)=c¢ {¢: a
constant <1} and {n(m’, n)n(m,n))=c¢ R

‘In the second model, we consider the river formation process with increasing fallmg
rain. The quantity of falling rain increases according to the river’s flow in the down-
stream direction. We replace the donstant injection rate of equation (1) by the injection
rate of the power law L® where L is the length in the downstream direction. The
second model is given by

Itm+1, n)=wlm, n)I(m n)+[1=wim n+1)1I(m n+1)+m?  (4)

The variable injection rate does not change the geometrical properties of the river
network. However, it has an important effect on the flow distribution. In the second
model, the flow rate on the river network is not consistent with the area of its drainage
basin. We study the effect of the injection rate on the multifractality of the flow
distribution.

3. Simulation results

We perform the computer simulation of the first and second models for the square
lattice 300x300. The flow rate I(m, n) on each bond is calculated under a periodic
lateral boundary condition. In the first model, the injection of raindrops is added on
each site independently with the probability ¢, As an illustration, figure 1 shows the
patterns obtained by simulation of equation (3). Figures 1(a) and 1(b) are obtained
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Figure 1. Typical river network patterns generated by the first extended Scheidegger’s river
model. These runs were done on a 20 x 60 square lattice under a periodic lateral boundary
condition for an illustration. {2} The river pattern obtained under the injection rate of
probability ¢=0.1. (b) The pattern with ¢=0.5.

under ¢=0.1 and ¢=0.5, respectively, for size 20x60. We investigate the scaling

behaviour of the river pattern. We define the partition function Z{g) of the moments
of flow rate as :

Z(q)=%.1 | )

where the summation ranges over all bonds in the river network. Figure 2 shows the
log-log plot of the moments against the size L in the downstream direetion for ¢ =0.5.
1t is confirmed that, for large I, the partition function scales with size L as

Z(q)—._uLﬂq)‘ .
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Figure 2. The log-log plot of the moments Z{g) defined by equation (5) against the size
L for ¢=0.5 showing the scaling behaviour (6) in the first model.
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Figure 3 shows the Z(3) behaviour against L for ¢=0.1, 0.3, 0.5, 0.7, 0.9 and 1. For
L larger than 10, the slopes of Z(3) are a constant independent of ¢ The case c=1.0
corresponds to the original Scheidegger’s model. The multiscaling exponent £(g) is
consistent with that of Scheidegger’s model [24], In the first model with the random
injection rate, the river pattern in figure 1 is apparently different from that of
Scheidegger's river. However, the scaling properties agree with those of Scheidegger’s
river. The exponent {{0) is equal to 1. The exponent {(1) gives the dimension d =2
. of the river network. For a sufficiently large g, £{g)/g gives the scaling exponent
1.50+0.02 for the largest flow rate, which is consistent with the exponent of the drainage
basin. ) . .

In order to characterize the multifractality of flow distribution, it is convenient to
normalize the flow rate. The normalized flow rate I} on the bond i is defined as

“Ii=L/Z(1). , (7)
The normalized partition function Z'(g) is given by ;
Z'(gy=Z()HZDH. , | (8)
For a sufficiently large L, the partition function scales as o
- ZNgy= LT, - : {9)
With the Legendre transformation of 7{g), we obtain fhe f~a spectrum
 f@=gelg) -9 , NS

where a{g) =087{(q)/aq is the variable conjugate to g. Figure 4 shows the f-a spectra
for ¢ =0.5 and 1.0. The f- & spectrum of ¢ = 0.5 agrees with that of Scheidegger’s model
{c=1.0). The maximum value f{0)} of f{a) is related to the dimension d =2 of the
river network: f(0)=d —1=1. The maximum value of o gives the minimum fraction
of flow rate. The minimum value of « gives the maximum fraction of flow rate. The
minjmum valtue a(o0) is exactly related to the exponent d; of the drainage basin:

(@)= (37/8q) goco =2 dj i
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Figure 3. The third-order moment Z{3} behaviour plotted against L for ¢=0.1, 0.3, 0.5,
0.7, 0.9 and 1 in the Grst model. For L larger than 10, the slopes of Z(3) are a constant
independent of the probability ¢



3076 T Nagatani

a (=]
= :C=0.5
i - ,ue"’”"'"“"“'ﬂ.n
q"'u
»
f o
§°u
05— £
0 | |
0 o =

o . .
Figure 4, The f-o spectra of the How distribution for £=0.5 a.mi ¢=1 in the first model.

The minimum value «{o0) obtained from our simulation is given by 0.4940.03. We
obtain the exponent dr=1.5+0.03 from equation (11). This value is consistent with
the theoretical result of 1.50 [21,22]. The properties of river networks should. be
characterized by the infinite set of exponents or the f-o spectrum. The river pattern
with a random injection rate is apparently different from that of Scheidegger’s river
(see figure 1) but the multifractal scaling property is consistent with that of Scheidegger's
rivet,

We now consider the second model described by equation (4). Figure 5 shows the
log-log plot of the moments against the size L for £ =0.5 It is confirmed that the
partition function scales with size L as Z(g)~ L*%. The slope of Z(3) increases with
the parameter 8. The case of 8 =0 is consistent with Scheidegger’s model. Figure 6
represents the exponent {(g) plotted against g for various 8. For 8 > 0, the exponent
£(q) approaches zero for a sufficiently small negative value of g. For positive values
of g, the exponent {(q) deviates from those of Scheidegger’s model (8 =0} with
increasing 5, From equations (7)-(10), we can calcolate the -« spectra. With increasing
B, the maximum values of «(q) increase. However, the f-a spectra are consistemt with
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Figure 5. The log-log piot of the moments Z(q)} defined by equation {5) against the size
L for B =0.5 for the second meodel (4).
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Figure 6. The behaviour of the scaling exponent { (g} against g for various g in the second
model.

each other for the region @ < 2. The minimum value a(c) agrees nearly with the value
a(o0)=0.5 of Scheidegger’s model. In the first model and Scheidegger’s model, the
flow rate on the river network is consistent with the area of its drainage basin, but this
is not so for the second model. In the second model, the flow rate increases with a
larger power than that of Scheidegger's model. The largest flow rate is given by {{(gq)/q
for large g: the slope for large ¢ in figure 6. We find that the power law injection rate
has an important effect on the multifractality of the flow distribution..

4. Summary

We have presented two extended versions of Scheidegger’s river network model. We
investigated the effect of variable injection rates on the flow distribution in the river
network. We derived the multifractal structures of the flow distribution in the extended -
models. In the first model, for a large L, we showed that the multifractal structure of
the flow distribution does not change with the quantity of falling rain and agrees with
that.of Scheidegger’s model. We also found that the power law injection rate has an
- important effect on the multifractal structure of the Aow distribution in the second
model.
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