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Abstract. The mullifanal slmmre of the flow (channel dischargc) distribution is investi:. 
gated in river nework models which are extended ~ersions of Scheidegger‘s river network 
model. Two models are proposed: in the first model the constant injection rate in Scheidcg- 
gcfs model is replaced by an unwrrel3red random variable 3nd in the second model the 
injection rate is g iwn by that of 3 power law L p  \I here L is the length in the downsueam 
direction. The effect of the injection rate on the mulrifracralit) of the Row distribution is 
studied by Monte Carlo simulation. It is shown th3t the panition funnion Z ( q ) = I ,  1: 
scales as Zlq);- L‘.*’ where 1, is the Bow (channel discharge) of water passing over (he 
band t within the river network and the summation ranges over all bonds. In the firs1 
model, for a large L, the multirractal suunure of the Row distribution agrees with that of 
Scheidcggcr’s model. In the second model, il is found that the p o w n  Ian injcction rate 
has an imponsnt eden an the multifraclaliry. 

1. Introduction 

Recently, there has been increasing interest in fractal structures of growth processes 
such as diffusion-limited aggregation (DLA), ballistic deposition and river networks. 
The DLA model  presents a prototype of the pattern formation of diffuse systems 
including electrodeposition, crystal growth, viscous fingering and bacterial colonies 
[l-SI. The ballistic deposition model provides a basis for understanding the deposition 
processes used to prepare a wide_variety of thin-film devices [9]. Branched river 
networks are among nature’s most common pattems, spontaneously producing fractal 
structure [lo]. 

The multifractalproperties of the DLA and the random resistor network have recently 
attracted considerable attention [ll-141. It has become clear that the DLA aggregate 
cannot be fully characterized by its fractal dimensionality. In order to characterize the 
aggregate further, it is necessary to derive the~multifractal structure of the growth 
probability distribution. From the multifractality, one can obtain detailed information 
on the capability of each perimeter site to grow and, therefore, more information on 
thesurfacestructure [ll, 131. Also,ithas beenfoundthattheelectriccurrentdistribution 
on the percolation cluster shows multifractal structure [lS]. It has been shown that 
electrical properties of self-similar resistor networks should be characterized by an 
infinite set of exponents. 

Rivers have been studied extensively by a diverse range of researchers with a variety 
of techniques and goals 116,171. Geomorphologists have found scaling relationships 
among various combinations of basin statistics from field data, such as drainage density 
and branching ratios. Hydrologists have likewise extracted power laws for channel 
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parameters such as width, depth and velocity as functions of total channel discharge. 
Some investigators have constrncted models for the evolution of an entire drainage 
network [l8-201. Scheidegger’s model is the simplest model which reveals the essential 
features of river formation. It is known that the  size^ distribution of rivers in 
Scheidegger’s model satisfies the power law and the river pattern shows the self-affine 
fractal structure from theoretical methods and computer simulation [21-231. Very 
recently, it was found that the flow (channel discharge) distribution in Scheidegger’s 
river network shows a typical multifractal structure [24]. It was shown that the partition 
function Z(q) Et I ?  scales as Z ( q )  = L3(4) where I j  is the flow of water passing over 
the bond i within the river network, the summation ranges over all bonds and Lis  the 
sue of river network. It was found that the river width distribution also shows 
multifractality if the width w of a river scales as w 

In this paper, we extend Scheidegger’s river network model to take into account 
the variable injection rate. We present two extended versions of Scheidegger’s river 
model. In the first model, the constant injection rate in Scheidegger’s model is replaced 
by an uncorrelated random variable.;The strength of the random injection rate rep- 
resents the density of stationary falling rain. The first model can take into account the 
effect of the quantity of rain on the flow distribution in the river network. In the second 
model, we replace the constant injection rate by the injection rate of the power law 
Lp where L is the length in the downstream direction. The second model represents 
the river formation process with increasing falling rain. The quantity of falling rain 
increases according to the river’s flow in the downstream direction. We investigate the 
effect of the injection rate on the multifractality of the Bow distribution by the use of 
Monte Carlo simulation. The variable injection rate does not change the geometrical 
properties of the river network. However, it has an important effect on the flow 
distribution. 

In the case of a constant injection rate, the Bow (channel discharge) coincides with 
the drainage basin area. In real river networks, the flow distribution is not consistent 
with the distribution of the drainage basin area. Generally, the rainfall upstream is 
different from that downstream. The local rainfall changes as it goes downstream. The 
simple river network model with this property has been little investigated. The second 
model is presented to take into account a variable rainfall. We are interested in the 
scaling behaviour of a river network. Therefore, we consider the second model with 
the injection rate of the power law Lo. 

The paper is organized as follows. In section 2 we describe the extended models 
of Scheidegger’s river network. In section 3 we present the simulation results. We 
derive the scaling of the partition function and the multifractality of the flow distribu- 
tion. It is shown that in the first model the multifractal structure ,of the flow distribution 
agrees with that of Scheidegger’s model and in the second model the power law 
injection rate has an important effect on the multifractality. In section 4 we give a 
summary. 

Io .  

2. Models 

First we introduce Scheidegger’s river network model [21]. We extend Scheidegger’s 
model to take into account a variable injection rate. In Scheidegger’s model, rain is 
assumed to be stationary and to fall uniformly on oblique square lattices. One unit of 
water is injected into each lattice site per unit time. Then, fallen raindrops run down 
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the slope. When two raindrops collide with each other, they join and make one drop, 
which runs down just as before the collision. Any splitting of the flow is prohibited. 
Flows are allowed to go right or~~left but only in the downstream direction. As the 
result, the rivers do not contain any loops. All branches are directed upstream. One 
of the most important quantities in'this system is the distribution of flow rates in the 
river network. The rate of flow in the river network is proportional to the area of its 
drainage basin. The flow rate 1; on the bond i is defined as  the amount of flowing 
water through the bond i per unit time. Each bond of the river network can be 
characterized by the flow rate of water. If the bond (or site) is labelled by the position 
(m, n )  where m indicates the downstream direction, the flow rate satisfies the equation 

I ( m + l ,  n ) =  w(m,  n)1(m, n ) + [ l  - w ( m ,  n + i ) ] I ( m ,  n + l ) + l  - (1) 

where w(m, n )  denotes the realization of the flow direction at the site (m, n) which is 
equal to 1  when^ the flow at the site (m, n )  goes down right and 0 when the flow goes 
down left and w(m,  n )  is given by 

probability 4 
probability $. w(m, n) = 

We extend Scheidegger's model to take into account the variable injection rate. 
We present two versions of Scheidegger's model. In the first model, the constant 
injection rate in equation (1) is replaced by an uncorrelated random. variable. The 
strength of the random injection rate represents the density of stationary falling rain. 
The first model can take into account the effect of the quantity of rain on the flow 
distribution. The first model 'is given by 

(3) I ( m +  1, n )  = w(m,  n) I (m ,  n )  +[I-  w(m, n +  i)]I(m, n + l )+q(m+l ,  n )  

where the injection rate q(m, n )  represents white noise with a mean ( ? ) = e  ( e :  a 
constant<l) and (q(m', n')q(m, n ) ) =  c'6,.,6,,,,. 

I n  the second"de1, we consider the river formation prodess with increasing falling 
rain. The quantity of falling rain increases according to the river's flow in the down- 
stream direction. We replace the constant injection rate of equation (1) by the injection 
rate of the power law Lp where L is the length in the downstream direction. The 
second model is given by 

I ( m + l , n ) = i v ( m , n ) I ( m ,  n ) + [ i  - w ( m , a , + ~ ~ ) ] I ( m ,  n + l ) t m P .  (4) 

The variable injection rate does not change the geometrical properties of the river 
network. However, it has an important effect on the flow distribution. In the second 
model, the flow rate on the river network is not consistent with the area of its drainage 
basin. We study the effect of the injection rate on the multifractality of the flow 
distribution. 

3. Simulation results 

We perform the computer simulation of the first and second models for the square 
lattice 300 x 300. The flow rate I (  m, n )  on each bond is calculated under a periodic 
lateral boundary condition. In the first model, the injection of raindrops is added on 
each site independently with the probability e. As an illustration, figure 1 shows the 
pattems obtained by simulation of equation (3). Figures l ( a )  and l (b)  are obtained 
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Figure 1. Typical river network pattems generated by the first extended Scheidegger's river 
model. These runs were done on a 2Ox 60 square lattice under a periodic lateral boundary 
condition for an illustration. (Q) "he river pattem obtained under the injection rate of 
probability c = 0.1. ( b )  The pattem with c = 0.5. 

under c = 0.1 and c = 0.5, respectively, for size 20 x 60. We investigate the scaling 
behaviour of the river pattern. We define the partition function Z(q) of the moments 
of flow rate as 

Z(q)=C 1: (5) 
i 

where the summation ranges over all bonds in the river network. Figure 2 shows the 
log-log plot of the moments against the size L in the downstream direction for c = 0.5. 
It is confirmed that, for large L, the partition function scales with size L as 

Z (  q )  = LC'? 

1 10 100 
L 

Figure 2 The log-log plot of the moments Z ( q )  de6ned by equation (5) against the size 
L for c=0.5 showing the scaling behaviour (6) in the fint model. 
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Figure 3 shows the Z ( 3 )  behaviour against L for c=O.1, 0.3, 0.5, 0.7, 0.9 and 1. For 
L larger than 10, the slopes of Z(3)  are a constant independent of c. T h e  case c = 1.0 
corresponds to the original Scheidegger's model. The multiscaling exponent c(q) is 
consistent with that of Scheidegger's model [24]. In the first model with the random 
injection rate, the river pattern in figure 1 is apparently different from that of 
Scheidegger's river. However, the scaling properties agree with those of Scheidegger's 
river. The exponent c(0) is equal to 1. The exponent <(1) gives the dimension d =2 
of the river network. For a sufficiently large q, C(q)/q gives the scaling exponent 
1.50 * 0.02 for the largest Bow rate, which is consistent with the exponent of the drainage 
basin. 

In order to characterize the multifractality of Bow distribution, it is convenient to 
normalize the Row rate. The normalized flow rate I :  on the bond i is defined as 

I:= Z / Z ( l ) .  (7) 

The normalized partition function Z'(q) is given by 

.m = Z ( ~ ) / I Z ( ~ ) I ~ .  
For a sufficiently large L, the partition function scales as 

. ~ Zyq) =% L-"9'. (9) 

f ( q ) = q d q ) - d q )  (10) 

With the Legendre transformation of T(q) ,  we obtain the f-e spectrum 

where a(q)  =$r(q)/aq is the variable conjugate to q. Figure 4 shows thef-a spectra 
for e = 0.5 and 1.0. Thef-(I spectrum of c =O.S~agrees with that of Scheidegger's model 
( e  = 1.0). The maximum value fC0) of f ( a )  is related to the dimension d =2.  of the 
river network f(0) = d - 1 = 1. The maximum value of (I gives the minimum fraction 
of Bow rate. The minimum value of (I gives the maximum fraction of Bow rate. The 
minimum value .(a) is exactly related to the exponent dr of the drainage basin: 

.(a) = ( J T / a q ) q = m =  2- dp (11) 

1W I 1 
1 10 100 L 

Figme 3. The third-order moment Z(3)  behaviour plotted against L for c=0.1, 0.3, 0.5, 
0.7, 0.9 and 1 in the first model. For L larger than 10, the slopes of Z(3) are a constant 
independent of the probability c 
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. :c=0.5 
1 

f 
0.5 

0 , 
0 1 "' 1 2 .  

c i  
Figure 4. The f - a  spectra of the flow distribution For e = O S  and e =  1 in the first model. 

The minimum value ~ ~ ( 0 0 )  obtained from our simulation is given by 0.4910.03. We 
obtain the exponent d,= 1.5*0.03 from equation (11). This value is consistent with 
the theoretical result of 1.50 [21, 221. The properties of river networks  should^ be 
characterized by the infinite set of exponents or the f - a  spectrum. The river pattern 
with a random injection rate is apparently different from that of Scheidegger's river 
(see figure 1) but the multifraaal scaling property is consistent with that of Scheidegger's 
river. 

We now consider the second model described by equation (4). Figure 5 shows the 
log-log plot of the moments against the size L for p =OS. It is confirmed that the 
partition function scales with size L as Z(q) = Lrc9? The slope of Z(3) increases with 
the parameter p. The case of p = O  is  consistent with Scheidegger's model. Figure 6 
represents the exponent ((9) plotted against g for various 6. For p > 0, the exponent 
[ (q )  approaches zero for a sufficiently small negative value of g. For positive values 
of q, the exponent r ( q )  deviates from those of Scheidegger's model ( p  = 0) with 
increasing p. From equations (7)-(10), we can calculate thef-a spectra. With increasing 
p,  the maximum values of d g )  increase. However, thef-a spectra are consistent with 
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. , .  I 

-4 -2 , 0 2 4 6 
4 

Figure 6. The behaviour of the scaling exponent ((4) against q for various 0 in the second 
model. 

each other for the region LY < 2. The minimum value (~(oo) agrees nearly with the value 
n(m) = 0.5 of Scheidegger's model. In the first model and Scheidegger's model, the 
flow rate on the river network is consistent with the area of its drainage basin, but this 
is not so for the second model. In the second model,  the^ flow rate increases with a 
larger power than that of Scheidegger's model. The largest flow rate is given by L(q) /q  
for large q: the slope for large q in figure 6.  We find that the power law injection rate 
has an important effect on the multifractality of the flow distribution. 

4. Summary 

We have presented two  extended versions of Scheidegger's river network model. We 
investigated the eBect of-variable injection rates on the flow distribution in the river 
network. We derived the multifractal structures of the flow distribution in the extended 
models. In the first model, for a large L, we showed that the multifractal structure of 
the flow distribution does not change with the quantity of falling rain and agrees with 
that~of Scheidegger's model. We also found that the power law injection rate has an 
important effect on the multifractal structure of the flow distribution in the second 
model. 
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